If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1x^2)+5x+2=0
We add all the numbers together, and all the variables
x^2+5x+2=0
a = 1; b = 5; c = +2;
Δ = b2-4ac
Δ = 52-4·1·2
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{17}}{2*1}=\frac{-5-\sqrt{17}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{17}}{2*1}=\frac{-5+\sqrt{17}}{2} $
| 2^x+2^2x=72 | | 48=10b-12 | | (2x^2)+5x-4=0 | | -n/3=-9 | | 2y-10y-21=0 | | (A*X)+2y=6 | | -n/6=-5 | | (5x^2)+x-2=0 | | f÷3-5=12+5 | | 1/3(20+m)=7 | | (-4x^2)-4x+5=0 | | 3(k-16)=-16 | | –u+7u−4u=–20 | | (-2x^2)-x-1=0 | | (6x^2)-2x-3=0 | | -13y+16y=-18 | | 12x+3=57-6x | | (x-9)+(0.5x)=180 | | (x-9)+{(1/2)x}=180 | | 14n=122 | | 1.2x=1.32 | | (x-9)+(1/2x)=180 | | x²-12x+38=0 | | 4(6^x)=148 | | -4(5g+9)=-8g | | 10-8j=-10j-8 | | 1415−16x^2=0 | | 8+4x=2(x-1) | | 17n=-199 | | 12.1+x/6=-7.1 | | 7a-8-12a+4=-5a-4 | | -3g-6=15 |